Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 22(1): 348, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930411

RESUMO

Understanding the contributions of transcription factor DNA binding sites to transcriptional enhancers is a significant challenge. We developed Quantitative enhancer-FACS-Seq for highly parallel quantification of enhancer activities from a genomically integrated reporter in Drosophila melanogaster embryos. We investigate the contributions of the DNA binding motifs of four poorly characterized TFs to the activities of twelve embryonic mesodermal enhancers. We measure quantitative changes in enhancer activity and discover a range of epistatic interactions among the motifs, both synergistic and alleviating. We find that understanding the regulatory consequences of TF binding motifs requires that they be investigated in combination across enhancer contexts.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Elementos Facilitadores Genéticos , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Sítios de Ligação , DNA/metabolismo , Proteínas de Ligação a DNA , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Fatores de Transcrição/metabolismo
2.
RNA ; 23(4): 504-520, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28031481

RESUMO

Piwi proteins utilize small RNAs (piRNAs) to recognize target transcripts such as transposable elements (TE). However, extensive piRNA sequence diversity also suggests that Piwi/piRNA complexes interact with many transcripts beyond TEs. To determine Piwi target RNAs, we used ribonucleoprotein-immunoprecipitation (RIP) and cross-linking and immunoprecipitation (CLIP) to identify thousands of transcripts associated with the Piwi proteins XIWI and XILI (Piwi-protein-associated transcripts, PATs) from early stage oocytes of X. laevis and X. tropicalis Most PATs associate with both XIWI and XILI and include transcripts of developmentally important proteins in oogenesis and embryogenesis. Only a minor fraction of PATs in both frog species displayed near perfect matches to piRNAs. Since predicting imperfect pairing between all piRNAs and target RNAs remains intractable, we instead determined that PAT read counts correlate well with the lengths and expression levels of transcripts, features that have also been observed for oocyte mRNAs associated with Drosophila Piwi proteins. We used an in vitro assay with exogenous RNA to confirm that XIWI associates with RNAs in a length- and concentration-dependent manner. In this assay, noncoding transcripts with many perfectly matched antisense piRNAs were unstable, whereas coding transcripts with matching piRNAs were stable, consistent with emerging evidence that Piwi proteins both promote the turnover of TEs and other RNAs, and may also regulate mRNA localization and translation. Our study suggests that Piwi proteins play multiple roles in germ cells and establishes a tractable vertebrate system to study the role of Piwi proteins in transcript regulation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Oócitos/metabolismo , RNA Interferente Pequeno/genética , Transcriptoma , Proteínas de Xenopus/genética , Xenopus/genética , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Bioensaio , Elementos de DNA Transponíveis , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Oócitos/crescimento & desenvolvimento , Oogênese/genética , Filogenia , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Xenopus/classificação , Xenopus/crescimento & desenvolvimento , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
3.
Nucleic Acids Res ; 43(22): 10655-72, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26578579

RESUMO

To understand how transposon landscapes (TLs) vary across animal genomes, we describe a new method called the Transposon Insertion and Depletion AnaLyzer (TIDAL) and a database of >300 TLs in Drosophila melanogaster (TIDAL-Fly). Our analysis reveals pervasive TL diversity across cell lines and fly strains, even for identically named sub-strains from different laboratories such as the ISO1 strain used for the reference genome sequence. On average, >500 novel insertions exist in every lab strain, inbred strains of the Drosophila Genetic Reference Panel (DGRP), and fly isolates in the Drosophila Genome Nexus (DGN). A minority (<25%) of transposon families comprise the majority (>70%) of TL diversity across fly strains. A sharp contrast between insertion and depletion patterns indicates that many transposons are unique to the ISO1 reference genome sequence. Although TL diversity from fly strains reaches asymptotic limits with increasing sequencing depth, rampant TL diversity causes unsaturated detection of TLs in pools of flies. Finally, we show novel transposon insertions negatively correlate with Piwi-interacting RNA (piRNA) levels for most transposon families, except for the highly-abundant roo retrotransposon. Our study provides a useful resource for Drosophila geneticists to understand how transposons create extensive genomic diversity in fly cell lines and strains.


Assuntos
Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Genômica/métodos , Retroelementos , Animais , Linhagem Celular , Bases de Dados de Ácidos Nucleicos , Variação Genética , Genoma de Inseto , RNA Interferente Pequeno/metabolismo
4.
PLoS Genet ; 11(11): e1005652, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26588211

RESUMO

The Piwi pathway is deeply conserved amongst animals because one of its essential functions is to repress transposons. However, many Piwi-interacting RNAs (piRNAs) do not base-pair to transposons and remain mysterious in their targeting function. The sheer number of piRNA cluster (piC) loci in animal genomes and infrequent piRNA sequence conservation also present challenges in determining which piC loci are most important for development. To address this question, we determined the piRNA expression patterns of piC loci across a wide phylogenetic spectrum of animals, and reveal that most genic and intergenic piC loci evolve rapidly in their capacity to generate piRNAs, regardless of known transposon silencing function. Surprisingly, we also uncovered a distinct set of piC loci with piRNA expression conserved deeply in Eutherian mammals. We name these loci Eutherian-Conserved piRNA cluster (ECpiC) loci. Supporting the hypothesis that conservation of piRNA expression across ~100 million years of Eutherian evolution implies function, we determined that one ECpiC locus generates abundant piRNAs antisense to the STOX1 transcript, a gene clinically associated with preeclampsia. Furthermore, we confirmed reduced piRNAs in existing mouse mutations at ECpiC-Asb1 and -Cbl, which also display spermatogenic defects. The Asb1 mutant testes with strongly reduced Asb1 piRNAs also exhibit up-regulated gene expression profiles. These data indicate ECpiC loci may be specially adapted to support Eutherian reproduction.


Assuntos
Mamíferos/genética , Família Multigênica , RNA Interferente Pequeno/genética , Animais , Evolução Molecular , Mamíferos/classificação
5.
RNA ; 20(12): 1977-86, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25336588

RESUMO

Although Piwi proteins and Piwi-interacting RNAs (piRNAs) genetically repress transposable elements (TEs), it is unclear how the highly diverse piRNA populations direct Piwi proteins to silence TE targets without silencing the entire transcriptome. To determine the capacity of piRNA-mediated silencing, we introduced reporter genes into Drosophila OSS cells, which express microRNAs (miRNAs) and piRNAs, and compared the Piwi pathway to the Argonaute pathway in gene regulation. Reporter constructs containing several target sites that were robustly silenced by miRNAs were not silenced to the same degrees by piRNAs. However, another set of reporters we designed to enable a large number of both TE-directed and genic piRNAs to bind were robustly silenced by the PIWI/piRNA complex in OSS cells. These reporters show that a bulk of piRNAs are required to pair to the reporter's transcripts and not the reporter's DNA sequence to engage PIWI-mediated silencing. Following our genome-wide study of PIWI-regulated targets in OSS cells, we assessed candidate gene elements with our reporter platform. These results suggest TE sequences are the most direct of PIWI regulatory targets while coding genes are less directly affected by PIWI targeting. Finally, our study suggests that the PIWI transcriptional silencing mechanism triggers robust chromatin changes on targets with sufficient piRNA binding, and preferentially regulates TE transcripts because protein-coding transcripts lack a threshold of targeting by piRNA populations. This reporter platform will facilitate future dissections of the PIWI-targeting mechanism.


Assuntos
Proteínas Argonautas/genética , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Inativação Gênica , RNA Interferente Pequeno/genética , Animais , Drosophila/genética , MicroRNAs/genética , Fases de Leitura Aberta/genética , RNA Antissenso
6.
Genome Res ; 24(12): 1977-90, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25267525

RESUMO

Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposable elements (TEs) from mobilizing in gonadal cells. To determine the spectrum of piRNA-regulated targets that may extend beyond TEs, we conducted a genome-wide survey for transcripts associated with PIWI and for transcripts affected by PIWI knockdown in Drosophila ovarian somatic sheet (OSS) cells, a follicle cell line expressing the Piwi pathway. Despite the immense sequence diversity among OSS cell piRNAs, our analysis indicates that TE transcripts are the major transcripts associated with and directly regulated by PIWI. However, several coding genes were indirectly regulated by PIWI via an adjacent de novo TE insertion that generated a nascent TE transcript. Interestingly, we noticed that PIWI-regulated genes in OSS cells greatly differed from genes affected in a related follicle cell culture, ovarian somatic cells (OSCs). Therefore, we characterized the distinct genomic TE insertions across four OSS and OSC lines and discovered dynamic TE landscapes in gonadal cultures that were defined by a subset of active TEs. Particular de novo TEs appeared to stimulate the expression of novel candidate long noncoding RNAs (lncRNAs) in a cell lineage-specific manner, and some of these TE-associated lncRNAs were associated with PIWI and overlapped PIWI-regulated genes. Our analyses of OSCs and OSS cells demonstrate that despite having a Piwi pathway to suppress endogenous mobile elements, gonadal cell TE landscapes can still dramatically change and create transcriptome diversity.


Assuntos
Elementos de DNA Transponíveis , Drosophila/genética , Regulação da Expressão Gênica , RNA Longo não Codificante , RNA Interferente Pequeno , Animais , Linhagem Celular , Análise por Conglomerados , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Transcrição Gênica , Transcriptoma
7.
Nat Genet ; 46(7): 685-92, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24908250

RESUMO

Phenotypic differences between closely related species are thought to arise primarily from changes in gene expression due to mutations in cis-regulatory sequences (enhancers). However, it has remained unclear how frequently mutations alter enhancer activity or create functional enhancers de novo. Here we use STARR-seq, a recently developed quantitative enhancer assay, to determine genome-wide enhancer activity profiles for five Drosophila species in the constant trans-regulatory environment of Drosophila melanogaster S2 cells. We find that the functions of a large fraction of D. melanogaster enhancers are conserved for their orthologous sequences owing to selection and stabilizing turnover of transcription factor motifs. Moreover, hundreds of enhancers have been gained since the D. melanogaster-Drosophila yakuba split about 11 million years ago without apparent adaptive selection and can contribute to changes in gene expression in vivo. Our finding that enhancer activity is often deeply conserved and frequently gained provides functional insights into regulatory evolution.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Elementos Facilitadores Genéticos/genética , Evolução Molecular , Genoma , Animais , Células Cultivadas , Drosophila/classificação , Drosophila/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Luciferases/metabolismo , Fatores de Transcrição/metabolismo
8.
PLoS One ; 6(1): e14500, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21249130

RESUMO

BACKGROUND: The Gadd45 proteins play important roles in growth control, maintenance of genomic stability, DNA repair, and apoptosis. Recently, Gadd45 proteins have also been implicated in epigenetic gene regulation by promoting active DNA demethylation. Gadd45 proteins have sequence homology with the L7Ae/L30e/S12e RNA binding superfamily of ribosomal proteins, which raises the question if they may interact directly with nucleic acids. PRINCIPAL FINDINGS: Here we show that Gadd45a binds RNA but not single- or double stranded DNA or methylated DNA in vitro. Sucrose density gradient centrifugation experiments demonstrate that Gadd45a is present in high molecular weight particles, which are RNase sensitive. Gadd45a displays RNase-sensitive colocalization in nuclear speckles with the RNA helicase p68 and the RNA binding protein SC35. A K45A point mutation defective in RNA binding was still active in DNA demethylation. This suggests that RNA binding is not absolutely essential for demethylation of an artificial substrate. A point mutation at G39 impared RNA binding, nuclear speckle localization and DNA demethylation, emphasizing its relevance for Gadd45a function. SIGNIFICANCE: The results implicate RNA in Gadd45a function and suggest that Gadd45a is associated with a ribonucleoprotein particle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Estruturas do Núcleo Celular/química , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular , Estruturas do Núcleo Celular/ultraestrutura , RNA Helicases DEAD-box/metabolismo , Metilação de DNA , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Mutação Puntual , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Ribonucleoproteínas/metabolismo , Fatores de Processamento de Serina-Arginina , Xenopus , Proteínas de Xenopus/genética , Proteínas de Xenopus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...